Metric and Arithmetic Properties of Mediant-rosen Maps

نویسنده

  • THOMAS A. SCHMIDT
چکیده

We define maps which induce mediant convergents of Rosen continued fractions and discuss arithmetic and metric properties of mediant convergents. In particular, we show equality of the ergodic theoretic Lenstra constant with the arithmetic Legendre constant for each of these maps. This value is sufficiently small that the mediant Rosen convergents directly determine the Hurwitz constant of Diophantine approximation of the underlying Fuchsian group. We thus succeed in giving a continued fractions based verification of these Hurwitz values.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy of a semigroup of maps from a set-valued view

In this paper, we introduce a new entropy-like invariant, named Hausdorff metric entropy, for finitely generated semigroups acting on compact metric spaces from a set-valued view and study its properties. We establish the relation between Hausdorff metric entropy and topological entropy of a semigroup defined by Bis. Some examples with positive or zero Hausdorff metric entropy are given. Moreov...

متن کامل

A Ciric-type common fixed point theorem in complete b-metric spaces

In this paper, we define the concept of compatible and weakly compatible mappings in b-metric spaces and inspired by the Ciric and et. al method, we produce appropriate conditions for given the unique common fixed point for a family of the even number of self-maps with together another two self-maps in a complete b-metric spaces. Also, we generalize this common fixed point theorem for a seq...

متن کامل

Proximity Point Properties for Admitting Center Maps

In this work we investigate a class of admitting center maps on a metric space. We state and prove some fixed point and best proximity point theorems for them. We obtain some results and relevant examples. In particular, we show that if $X$ is a reflexive Banach space with the Opial condition and $T:Crightarrow X$ is a continuous admiting center map, then $T$ has a fixed point in $X.$ Also, we ...

متن کامل

A RESULT ON FIXED POINTS FOR WEAKLY QUASI-CONTRACTION MAPS IN METRIC SPACES

In this paper, we give a new fixed point theorem forWeakly quasi-contraction maps in metric spaces. Our results extend and improve some fixed point and theorems in literature.    

متن کامل

Contractive maps in Mustafa-Sims metric spaces

The xed point result in Mustafa-Sims metrical structures obtained by Karapinar and Agarwal[Fixed Point Th. Appl., 2013, 2013:154] is deductible from a corresponding one stated in terms ofanticipative contractions over the associated (standard) metric space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007